Who is How Columnar? Exadata, Teradata, and HANA – Part 2: Column Processing

In my last post here I suggested that there were three levels of maturity around column orientation and described the first level, PAX, which provides columnar compression. This apparently is the level Exadata operates at with its Hybrid Columnar Compression.

In this post we will consider the next two levels of maturity: early materialized column processing and late materialized column processing which provide more I/O avoidance and some processing advantages.

In the previous post I suggested a five-column table and depicted each of those columns oriented on disk in separate file structures. This orientation provides the second level of maturity: columnar projection.

Imagine a query that selects only 4 of the five columns in the table leaving out the EmpFirst column. In this case the physical structure that stores EmpFirst does not have to be accessed; 20% less data is read, reducing the I/O overhead by the same amount. Somewhere in the process the magic has to be invoked that returns the columns to a row orientation… but just maybe that overhead costs less than the saving from the reduced I/O?

Better still, imagine a fact table with 100 columns and a query that accesses only 10 of the columns. This is a very common use case. The result is a 9X reduction in the amount of data that has to be read and a 9X reduction in the cost of weaving columns into rows. This is columnar projection and the impact of this far outweighs small advantage offered by PAX (PAX may provide a .1X-.5X, 10%-50%, compression advantage over full columnar tables). This is the advantage that lets most of the columnar databases beat Exadata in a fair fight.

But Teradata and Greenplum stop here. After data is projected and selected the data is decompressed into rows and processed using their conventional row-based database engines. The gains from more maturity are significant.

The true column stores read compressed columnar data into memory and then operate of the columnar data directly. This provides distinct advantages:

  • Since data remains compressed DRAM is used more efficiently
  • Aggregations against a single column access data in contiguous memory improving cache utilization
  • Since data remains compressed processor caches are used more efficiently
  • Since data is stored in bit maps it can be processed as vectors using the super-computing instruction sets available in many CPUs
  • Aggregations can be executed using multiplication instead of table scans
  • Distinct query optimizations are available when columnar dictionaries are available
  • Column structures behave as built-in indexes, eliminating the need for separate index structures

These advantages can provide 10X-50X performance improvements over the previous level of maturity.

Summary

  • Column Compression provides approximately a 4X performance advantage over row compression (10X instead of 2.5X). This is Column Maturity Level 1.
  • Columnar Projection includes the advantages of Column Compression and provides a further 5X-10X performance advantage (if your queries touch 1/5-1/10 of the columns). This is Column Maturity Level 2.
  • Columnar Processing provides a 10X+ performance improvement over just compression and projection. This is Column Maturity Level 3.

Of course your mileage will vary… If your workload tends to touch more than 80% of the columns in your big fact tables then columnar projection will not be useful… and Exadata may win. If your queries do not do much aggregation then columnar processing will be less useful… and a product at Level 2 may win. And of course, this blog has not addressed the complexities of joins and loading and workload management… so please do not consider this as a blanket promotion for Level 3 column stores… but now that you understand the architecture I hope you will be better able to call BS on the marketing…

Included is a table that outlines the maturity level of several products:

Product

Columnar Maturity Level

Notes

Teradata

2

 Columnar tables, Row Engine
Exadata

1

 PAX only
HANA

3

 Full Columnar Support
Greenplum

2

 Columnar tables, Row Engine
DB2

3

 BLU Hybrid
SQL Server

2

 I think… researching…
Vertica

3

 Full Columnar Support
Paraccel

3

 Full Columnar Support
Netezza

n/a

 No Columnar Support
Hadapt

2

 I think… researching…

The Fog is Getting Thicker…

English: San Francisco in fog
San Francisco in fog (Photo credit: Wikipedia)

I renamed this so that Teradata folks would not get here so often… its not really about Intelligent Memory… just prompted by it. The post on Intelligent Memory is here. – Rob

Two quick comments on Teradata’s recent announcement of Intelligent Memory.

First… very very cool. More on this to come.

Next… life is going to become very hard for my readers and for bloggers in this space. The notion of an in-memory database is becoming rightfully blurred… as is the notion of column store.

Oracle blurs the concepts with words like “database in-memory” and “hybrid column compression” which is neither an in-memory database or a column store.

Teradata blurs the concept with a strong offering that uses DRAM as a block-IO device (like the old RAM-disks we used to configure on our PCs).

Teradata and Greenplum blur the idea of a column store by adding columnar tables over their row store database engines.

I’m not a fan of the double-speak… but the ability of companies to apply the 80/20 rule to stretch their architectures and glue on new advanced technologies is a good thing for consumers.

But it becomes very hard to distinguish the products now.

In future blogs I’ll try to point out differences… but we’ll have to go a little deeper into the Database Fog.

Hadoop and the EDW

Squeeze If You Feel Pain (Photo credit: Artotem)

Cloudera and Teradata have jointly published a nice paper here that presents an interesting perspective of how Hadoop and an EDW play together. Simply put, Hadoop becomes the staging area for “raw data streams” while the EDW stores data from “operational systems”. Hadoop then analyzes the raw data and shares the results with the EDW. Two early examples provided suggest:

  • Click stream data is analyzed to identify customer preferences that are then shared with the EDW. Note that the amount of data sent from Hadoop to the EDW would be fairly small in this case.
  • Detailed data is stored on Hadoop to build analytic models. The models are then transferred to the EDW to score sales activity data. Note that in this scenario the scored activity detail has to live in Hadoop to perform modeling… but it is unclear why it has to live in the EDW as well. I presume that scoring takes place on the EDW instead of in Hadoop for performance reasons… but maybe the data, the modeling, and the scoring should just take place in Hadoop?

The paper then positions Hadoop as an active archive. I like this idea very much. Hadoop can store archived data that is only accessed once a month or once a quarter or less often… and that data can be processed directly by Hadoop programs or shared with the EDW data using facilities such as Teradata’s SQL-H, or Greenplum‘s External Hadoop tables (not by HAWQ, though… see here), or by other federation engines connected to HANA, SQL Server, Oracle, etc.

But think about the implications on how much data has to stay in your EDW if you archive everything older than 90, or even 180, days to Hadoop. The EDW shrinks significantly and the TCO advantage to your Enterprise will be significant. This is very cool.

There is one item in the paper I disagree with, though… and another statement that I think has a very short shelf-life.

The paper suggests that indexes, materialized views, aggregate join indexes, and other tweaks are what differentiates an EDW. I believe that reliance on these structures make for a fragile EDW where only some queries can run fast. I like Teradata better when it just robustly scans fast and none of these redundant-data tuning artifacts are required (more here and here). Teradata was the original scan-fast DBMS… it is more than capable.

The paper also suggests that an EDW maintains value by including a sophisticated cost-based optimizer that uses data demographic statistics to identify an optimal query execution plan. I agree that Hadoop lacks this now… but there are several projects like Cloudera Impala that will eliminate this gap in the near term.

I believe that if you read between the lines you will see more evidence to support my belief (here) that Hadoop will squeeze the EDW vendors hard… and that the size of a squeezed EDW will then fit in an in-memory database.

Wondering About Netezza… and A Teradata Prediction Comes True…

Magic 8 Ball (Photo credit: Wikipedia)

If you missed the tweet… 2+ years ago I predicted here that Teradata would go away from ByNet… and lo and behold they did (see here).

In the same post I predicted that Netezza would go away from FPGAs. This has not come to pass. But I wonder if it might… or if there is a bigger change possible?

With the recent announcements of DB2 BLU and column store I suspect that DB2 will outperform Netezza when the query mix does not fall directly in Netezza’s sweet spot.

I also have a suspicion that the Netezza architecture, with its execution engine split across two different processors, is just hard to engineer. I cannot think of another reason features come so slowly there. Why, for example, is there no columnar support? Greenplum built it on the same Postgres base with less than a handful of engineers in a year. Teradata now offers columnar tables as well.

These concerns… combined with some previous notes on Netezza add up as follows:

  1. FPGAs no longer provide a performance advantage (per my link above)
  2. FPGAs limit the ability of the DBMS to use more cores (see here)
  3. FPGAs limit the ability of the DBMS to manage workload (see here… and especially the comments)
  4. FPGAs and having a 2-phase split execution environment limits the ability to extend and enhance the code base (a new conjecture)
  5. Zone Maps and CBTs provide a limited ability to solve for a wide range of queries… they are just an index (see here)
  6. DB2 Column Store provides a performance boost equal to or greater than zone maps and CBTs (a new conjecture)
  7. DB2 BLU provides a performance boost well in excess of what Netezza can provide (see here)

The Netezza architecture with FPGAs provided a distinct advantage in 2000 when CPU was the scarce commodity. But multi-core systems and the advance of Moore’s Law soon made processing abundant… and the advantage of FPGA co-processing diminished. Without a distinct advantage the split execution architecture became a disadvantage… and the complexity of that design kept Netezza from developing the advances on top of the Postgres base that were very easy to develop by others.

Architecture counts… and DB2 is a strong product. If, as I suspect, DB2 is now a more capable product than Netezza… I wonder what path IBM may take?

MPP, IMDB and Moore’s Law

In the post here I listed the units of parallelism (UoP) applied by various products on a single node. Those findings are summarized in the table below.

Product

Version/HW

Cores per Node

UoP per Node

Notes

Teradata EDW 6700H

16

32

Uses hyper-threads.
Greenplum DCA UAP Edition

16

8

Recommends 1 Segment for each 2 cores. Maybe some multi-threading per query so it could be greater than 8 on the average… and could be 16 with hyper-threads… but not more than 32 for sure.
Exadata X3

12

12-24

Maybe only 12… cannot find if they use hyper-threads.
Netezza Striper

16

16

May use hyper-threads but limited by 16 FPGAs.
HANA Any Xeon E7-4800

40

80

Uses hyper-threads.

A UoP is defined as the maximum number of  instructions that can execute in parallel on a single node for a single query. Note that in the comments there was a lively debate where some readers wanted to count threads or processes or slices that were “active” but in a wait state. Since any program can start threads that wait I do not count these as UoP (later we might devise a new measure named units of waiting that would gauge the inefficiency in any given design by measuring the amount of waiting around required to keep the CPUs fed… maybe the measure would be valuable in measuring the inefficiency of the queue at your doctor’s office or at any government agency).

On some CPUs vendors such as Intel allow two threads to execute instructions in-parallel in a core. This is called hyper-threading and, if implemented, it allows for two UoP on a single core. Rather than constantly qualify the statements for the rest of this blog when I refer to cores I mean to imply hyper-threads.

The lively comments in the blog included some discussion of the sort of techniques used by vendors to try and keep the cores in the CPU on each node fed. It is these techniques that lead to more active I/O streams than cores and more threads than cores.

For several years now Intel and the other CPU manufacturers have been building ever more cores into their products. This has allowed them to continue the trend known as Moore’s Law. Multi-core is now a fact of life and even phones, tablets, and personal computers have multi-core chips.

But if you look at the table  you can see that the database products above, even the newly announced products from Teradata and Netezza, are using CPUs with relatively few cores. The high-end Intel processors have 40 cores and the databases, with the exception of HANA, use Intel products with at most 16 cores. Further, Intel will deliver Ivy Bridge processors to the market this year with 120 cores. These vendors know this… yet they have chosen to deliver appliances with the previous generation CPUs. You might ask why?

I believe that there is an architectural reason for this (also a marketing reason covered here).

It is very hard to keep 80 cores fed with data when you have to perform block I/O. It will be nearly impossible to keep the 240 cores coming with Ivy Bridge fed. One solution is to deploy more nodes in a shared-nothing configuration with fewer cores per node… but this will be expensive requiring more power, floorspace, administration, etc. This is the solution taken by most of the vendors above. Another solution is to solve the problem without I/O with an in-memory database (IMDB) architecture. This is the solution taken by SAP with HANA.

Intel, IBM, and the rest will continue to build out using the multi-core approach for the foreseeable future. IMDB products will be able to fully utilize this product. Other products will struggle to take full advantage as we can see already… they will adapt and adjust and do what they can… but ultimately IMDB will win, I think… because there is just no other way to keep up as Moore’s Law continues to drive technology… no other way to feed the CPU engines with data fast enough.

If I am right then you will see more IMDB offerings from more vendors, including from the major vendors in the near future (note that this does not include the announcements of “database in memory” from Oracle which is not by any measure an in-memory database).

This is the underlying reason why Donald Feinberg (and Timo Elliott) are right on here. Every organization will be running in-memory… and soon.

MPP on HANA, Exadata, Teradata, and Netezza

6 May… There is a good summary of this post and on the comments here.  – Rob

17 April… A single unit of parallelism is a core plus a thread/process to feed it instructions plus a feed of data. The only exception is when the core uses hyper-threading… in which case 2 instructions can execute more-or-less at the same time… then a core provides 2 units of parallelism. All of the other stuff: many threads per core and many data shards/slices per thread are just techniques to keep the core fed. – Rob

16 April… I edited this to correct my loose use of the word “shard”. A shard is a physical slice of data and I was using it to represent a unit of parallelism. – Rob

I made the observation in this post that there is some inefficiency in an architecture that builds parallel streams that communicate on a single node across operating system boundaries… and these inefficiencies can limit the number of parallel streams that can be deployed. Greenplum, for example, no longer recommends deploying a segment instance per core on a single node and as a result not all of the available CPU can be applied to each query.

This blog will outline some other interesting limits on the level of parallelism in several products and on the definition of Massively Parallel Processing (MPP). Note that the level of parallelism is directly associated with performance.

On HANA a thread is built for each core… including a thread for each hyper-thread. As a result HANA will split and process data with 80 units of parallelism on a high-end 40-core Intel server.

Exadata deploys 12 cores per cell/node in the storage subsystem. They deploy 12 disk drives per node. I cannot see it clearly documented how many threads they deploy per disk… but it could not be more than 24 units of parallelism if they use hyper-threading of some sort. It may well be that there are only 12 units of parallelism per node (see here).

Updated April 16: Netezza deploys 8 “slices” per S-Blade… 8 units of parallelism… one for each FPGA core in the Twin times four (2X4) Twinfin architecture (see here). The next generation Netezza Striper will have 16-way parallelism per node with 16 Intel cores and 16 FPGA cores…

Updated April 17: Teradata uses hyper-threading (see here)… so that they will deploy 24 units of parallelism per node on an EDW 6700C (2X6X2) and  32 units of parallelism per node on an EDW 6700H (2X8X2).

You can see the different definitions of the word “massive” in these various parallel processing systems.

Note that the next generation of Xeon processors coming out later this year will have 8X15 processors or 120 cores on a fat node:

  • This will provide HANA with the ability to deploy 240 units of parallelism per node.
  • Netezza will have to find a way to scale up the FPGA cores per S-Blade to keep up. TwinFin will have to become QuadFin or DozenFin. It became HexadecaFin… see above. – Rob
  • Exadata will have to put 120 SSD/disk drive combos in each node instead of 12 if they want to maintain the same parallelism-to-disk ratio with 120 units of parallelism.
  • Teradata will have to find a way to get more I/O bandwidth on the problem if they want to deploy nodes with 120+ units of parallelism per node.

Most likely all but HANA will deploy more nodes with a smaller number of cores and pay the price of more servers, more power, more floor space, and inefficient inter-node network communications.

So stay tuned…

Some Unaudited HANA Performance Numbers

Fast (Photo credit: Allie’s.Dad)

The following performance numbers are being reported publicly for HANA:

  • HANA scans data at 3MB/msec/core
    • On a high-end 80-core server this translates to 240GB/sec per node
  • HANA inserts rows at 1.5M records/sec/core
    • Or 120M records/sec per node…
  • Aggregates 12M records/sec/core
    • Or 960M records per node…

These numbers seem reasonable:

  • A 100X improvement over disk-based scan (The recent EMC DCA announcement claimed 2.4GB/sec per node for Greenplum)…
  • Sort of standard OLTP insert speeds for a big server…
  • Huge performance gains for in-memory aggregation using columnar orientation and SIMD HPC instructions…

Note that these numbers are the basis for suggesting that there is a new low-TCO approach to BI that eliminates aggregate tables, materialized views, cubes, and indexes… and eliminates the operational overhead of computing these artifacts… and still provides a sub-second response for all queries.

HAWQ and Hadoop and Open Source and a Wacky Idea

I want to soften my criticism of Greenplum‘s announcement of HAWQ a little. This post by Merv Adrian convinced me that part of by blog here looked at the issue of whether HAWQ is Hadoop too simply. I could outline a long chain of logic that shows the difficulty in making a rule for what is Hadoop and what is not (simply: MapR is Hadoop and commercial… Hadapt is Hadoop and uses a non-standard file format… so what is the rule?). But it is not really important… and I did not help my readers by getting sucked into the debate. It is not important whether Greenplum is Hadoop or not… whether they have committers or not. They are surely in the game and when other companies start treating them as competitors by calling them out (here) it proves that this is so.

It is not important, really, whether they have 5 developers or 300 on “Hadoop”. They may have been over-zealous in marketing this… but they were trying to impress us all with their commitment to Hadoop… and they succeeded… we should not doubt that they are “all-in”.

This leaves my concern discussed here over the technical sense in deploying Greenplum on HDFS as HAWQ… or deploying Greenplum in native mode with the UAP Hadoop integration features which include all of the same functionality as HAWQ… and 2x-3X better performance.

It leaves my concern that their open source competition more-or-less matches them in performance when queries are run against non-proprietary, native Hadoop, data structures… and my concerns that the community will match their performance very soon in every respect.

It is worth highlighting the value of HAWQ’s very nearly complete support for the SQL standard against native Hadoop data structures. This differentiates them. Building out the SQL dialect is not a hard technical problem these days. I predict that there will be very nearly complete support for SQL in an open source offering in the next 18-24 months.

These technical issues leave me concerned with the viability of Greenplum in the market. But there are two ways to look at the EMC Pivotal Initiative: it could be a cloud play… in which case Greenplum will be an uncomfortable fit; or it could be an open source play… in which case, here comes the wacky idea, Greenplum could be open-sourced along side Cloud Foundry and then this whole issue on committers and Hadoopiness becomes moot. Greenplum is, after all, Postgres under the covers.

Aster Data for a price…

(Photo credit: Wikipedia)

If Greenplum HAWQ does not look promising (see my previous posts on HAWQ here and here) what are the prospects for Teradata Aster Data… which aspires to both replace and/or co-exist with Hadoop for a fee? Teradata+Hadoop maybe… but Teradata+Aster+Hadoop seems like one layer too many… as does Aster+Hadoop.

(OK, I removed the bad “HAWQing” pun in the title… no complaints from readers… it just seemed unfair… – Rob)

HAWQ Performance Marketing

My contacts from Strata read my post here and provided me with the following information:

  • The performance numbers quoted for Greenplum HAWQ versus HIVE and Impala used Greenplum tables implemented over HDFS. In other words, this data is unreadable from outside of the Greenplum database… unreadable by any other program in the Hadoop eco-system… a proprietary format. If the tests were re-run using the same open data structures used by HIVE and Impala you would find the performance of HAWQ to be closer to, or worse than, those Hadoop components.
  • The HAWQ performance numbers quoted represent a 2X-3X performance degradation over the same benchmark run on the native Greenplum RDBMS.

Again… this is from a credible source… but please consider this a rumor… and view this report, and the associated Greenplum marketing… with an appropriate measure of engineering skepticism.

Greenplum is a fantastic product… if I assume the report to be true then I do not understand why are they doing this… what use case is solved by a 300% performance degradation accessing proprietary data in HDFS? Remember, you could put Greenplum in the same cluster as Hadoop (UAP) and query everything HAWQ could query without the performance degradation. I just do not see the point? Could someone from GP comment and help my readers and myself here?

Exit mobile version
%%footer%%