Who is How Columnar? Exadata, Teradata, and HANA – Part 1: Column Compression

Basic Table

There are three forms of columnar-orientation currently deployed by database systems today. Each builds upon the next. The simplest form uses column-orientation to provide better data compression. The next level of maturity stores columnar data in separate structures to support columnar projection. The most mature implementations support a columnar database engine that performs relational algebra on column-oriented data. Let me explain…

Imagine a simple table with 1M rows… with the schema and the first several rows depicted in Figure 1. Conceptually, a row-orientation deploys data on disk and in-memory as depicted in Figure 2 and a column-orientation deploys data on disk and in-memory as depicted in Figure 3. The actual deployment may be significantly different, as we will see.

Note that I am going to throw out some indicative numbers around compression. I will suggest that applying compression to rows will provide from 1.5X to 3.5X compression with and average of 2.5X… and that applying compression to columns provides from 3X compression to 50X compression with the average around 10X. These are supportable numbers but the compression you see for any specific data set will vary.

There are two powerful compression techniques that individually or combined provide most of the benefits: dictionary-encoding and run-length encoding. For the purposes of this blog I will describe only dictionary-encoding; and I will do an injustice to that by explaining it only briefly and conceptually… just enough that you get the idea.

Further compression is possible by encoding runs of similar values to a value plus the number of times it repeats so that the bit stream 0000000000000000 could be represented as 01111 (0 occurs 24 times).

You can now also start to see why column-orientation compresses better that a row-orientation. In the row block above there is little opportunity to encode whole rows in a dictionary… the cardinality of rows in a table is too high (note that this may not be true for a dimension table which is, in-effect, a dictionary). There is some opportunity to encode the bit runs in a row… as noted, you can expect to get 2X-2.5X from row compression for a fact table. Column-orientation allows dictionary encoding to be applied effectively to low cardinality columns… and this accounts for the advantage there.

Dictionary-encoding reduces data to a compressed form by building a map that provides a translation for each cardinal value in the table to a tightly compressed form. For example, if there are indeed only three values possible in the DeptID field above then we might build a dictionary for that column as depicted in Figure 4. You can see… by encoding and storing the data in the minimal number of bits required, significant storage reduction is possible… and the lower the cardinality of a column the smaller the resulting bit representation.

Note that there is no free lunch here. There is a cost to be paid in CPU cycles to compress data and to decompress data… but for a read-optimized data warehouse database compression is cool. Exactly how cool depends on the level of maturity and we will get to that as we go.

It is crucial to remember that column store databases are relational. They ingest rows and emit rows and perform relational algebra in-between. So there has to be some magic that turns tuples into columns and restores them from columns. The integrity of a row has to persist. Again I am going to defer on the details and point you at the references below… but imagine that for each row a bit map is built that, for each column, points to the entry in the column dictionary with the proper value.

There is no free lunch to column store… no free lunch anywhere, it seems. Building this bit map on INSERT is very expensive, and modifying it on UPDATE is fairly expensive. This is why column-orientation is not suitable for OLTP workloads without some extra effort. But the cost is amortized by significant performance gains for READs.

One last concept: since peripheral I/O reads blocks imagine two approaches to column compression: one applies the concepts above to an entire table breaking each table into separate column-oriented files that may be read separately; and one which applies the concepts individually to each large block in a table file. Imagine, in the first case that Figure 2 represents a picture of the first few rows in our 1M-row table. Imagine, in the second case, that Figure 2 represents the rows in one block of data re-oriented into columns.

This second, block-oriented, approach is called PAX, and it is more-or-less the approach used by Exadata. In the PAX approach each block contains its own mini-column store and a dictionary for dictionary encoding with the values in the block. Because the cardinality for columns within a block will often be less than for an entire table there are some distinct advantages to PAX compression. Compression will be higher by more than a little than for full table columnar compression.

When Exadata reads a block from disk it decompresses the data back into rows and performs row-oriented processing to complete the query. This is very cool for Exadata… a great feature. As noted, column compression may be 4X better than row compression on the average. This reduces the storage requirements and reduces the overhead of I/O by 4X… and this is a very significant improvement. But Exadata stops here. It is not a columnar-oriented DBMS and it misses the significant advantages that come from the next two levels of column-orientation… I’ll take these up in the next post.

To be clear, all of the databases that use these more mature techniques: Teradata, HANA, Greenplum, Vertica, Paraccel, DB2, and SQL Server gain from columnar compression even if the PAX approach provides some small advantage as a compression technique.

It is also worth noting that Teradata does not gain as much as others in this regard. This is not because of poor design, rather it is due to the fact that, to their credit, Teradata implemented a Teradata-specific dictionary-based compression scheme long ago. Columnar compression let others catch up to what Teradata has offered for years.

And before you ask… Netezza offers no columnar orientation… preferring to compress deeply using an FPGA co-processor to decompress… and to reduce I/O using zone maps rather than the using the mid-level column projection techniques in the next blog here.

Cloud DBMS < High Performance DBMS

English: Cloud (Photo credit: Wikipedia)

In my post here I suggested that database computing was becoming a special case of high-performance computing. This trend will bump up against the trend towards cloud computing and the bump will be noisy.

In the case of general commercial computing customers running cloudy virtualized servers paid a 5%-20% performance penalty… but the economics still worked for the cloud side.

For high-performance database computing it is unclear how much the penalty will be? If a virtualized, cloudy, database gives up performance because SIMD becomes problematic, priming the cache becomes hard, CPU stalls become more common, and there is a move from a shared nothing architecture to SANs or SAN-like shared data devices, then the penalty may be 300%-500% and the cloud databases will likely lose.

As I noted in the series starting here, there are lots of issues around high-performance database computing in the cloud. It will be interesting to see how the database vendors manage the bump and the noise. So keep an eye out. If your database of choice starts to look cloudy… if it becomes virtualized and it starts moving from a shared-nothing cluster to a SAN… then you will know which side of the bump they are betting on. And if they pick the cloudy side then you need to ask how they plan to architect the system to hold the penalty to under 20%…

I also mentioned in that series that in-memory databases had an advantage over peripheral-based databases as they did not have to pay a penalty for de-coupling the IO bandwidth that is part of a shared-nothing cluster. But even those vendors have to manage the fact that the database is abstracted… virtualized… away from the hardware.

If I were King I would develop a high-performance database that implemented the features of a cloud database: elasticity, easy provisioning, multi-tenancy; over bare metal. Then you might get the best of both worlds.

Database Computing is Supercomputing… Some external reading: May 2013

Superman: Doomsday & Beyond (Photo credit: Wikipedia)

I would like to recommend to you John Appleby’s post  here on the HANA blog site. While the title suggests the article is about HANA, in fact it is about trends in computing and processors… and very relevant to posts here past, present, and upcoming…

I would also recommend Curt Monash’s site. His notes on Teradata here mirror my observation that a 30%-50% performance boost per release cycle is the target for most commercial databases… and what wins in the general market. This is why the in-memory capabilities offered by HANA and maybe DB2 BLU are so disruptive. These products should offer way more than that… not 1.5X but 100X in some instances.

Finally I recommend “What Every Programmer Should Know About Memory” by Ulrich Drepper here. This paper provides a great foundation for the deep hardware topics to come.

Database computing is becoming a special case, a commercial case, of supercomputing… high-performance computing (HPC) to those less inclined to superlatives. Over the next few years the differentiation between products will increasingly be due to the use of high-performance computing techniques: in-memory techniques, vector processing, massive parallelism, and use of HPC instruction sets.

This may help you to get ready…

The Fog is Getting Thicker…

San Francisco in fog (Photo credit: Wikipedia)

I renamed this so that Teradata folks would not get here so often… its not really about Intelligent Memory… just prompted by it. The post on Intelligent Memory is here. – Rob

Two quick comments on Teradata’s recent announcement of Intelligent Memory.

First… very very cool. More on this to come.

Next… life is going to become very hard for my readers and for bloggers in this space. The notion of an in-memory database is becoming rightfully blurred… as is the notion of column store.

Oracle blurs the concepts with words like “database in-memory” and “hybrid column compression” which is neither an in-memory database or a column store.

Teradata blurs the concept with a strong offering that uses DRAM as a block-IO device (like the old RAM-disks we used to configure on our PCs).

Teradata and Greenplum blur the idea of a column store by adding columnar tables over their row store database engines.

I’m not a fan of the double-speak… but the ability of companies to apply the 80/20 rule to stretch their architectures and glue on new advanced technologies is a good thing for consumers.

But it becomes very hard to distinguish the products now.

In future blogs I’ll try to point out differences… but we’ll have to go a little deeper into the Database Fog.

How Good Is Teradata’s Intelligent Memory?

A 30 feet chunk of the cliff below the apartment building fell to Pacific Ocean. (Photo credit: Wikipedia)

Jason asked a great question in the comment section here… he asked… does Teradata’s Intelligent Memory erode HANA’s value proposition?  Let me answer here in a more general way that is applicable to the general database space…

Every time a vendor puts more silicon between the CPU and the disk they will improve their performance (and increase their price). Does this erode HANA’s value proposition? Sure. Every advance by any vendor erodes every other vendor’s position.

To win business a new database product has to be faster than the competition. In my experience you have to be at least 30% faster to unseat the incumbent. If you are 50% faster you will win a lot of business. If you are 2x, 100%, faster you win nearly every time.

Therefore the questions are:

  • Did the Teradata announcement eliminate a set of competitors from reaching these thresholds when Teradata is the incumbent? Yup. It is very smart.
  • Does Intelligent Memory allow Teradata to reach these thresholds when they compete against another incumbent. Yup.
  • Did it eliminate HANA from reaching these thresholds when competing with Teradata? I do not think so… in fact I’m pretty sure it is not the case… HANA should still be way over the 2x threshold… but the reasons why will require a deeper dive… stay tuned.

In the picture attached a 30 foot chunk eroded… but Exadata still stands. Will it be condemned?

Note: Here is a commercial post on the SAP HANA blog site that describes at a high level why I think HANA retains a distinct architectural advantage.

Wondering About Netezza… and A Teradata Prediction Comes True…

Magic 8 Ball (Photo credit: Wikipedia)

If you missed the tweet… 2+ years ago I predicted here that Teradata would go away from ByNet… and lo and behold they did (see here).

In the same post I predicted that Netezza would go away from FPGAs. This has not come to pass. But I wonder if it might… or if there is a bigger change possible?

With the recent announcements of DB2 BLU and column store I suspect that DB2 will outperform Netezza when the query mix does not fall directly in Netezza’s sweet spot.

I also have a suspicion that the Netezza architecture, with its execution engine split across two different processors, is just hard to engineer. I cannot think of another reason features come so slowly there. Why, for example, is there no columnar support? Greenplum built it on the same Postgres base with less than a handful of engineers in a year. Teradata now offers columnar tables as well.

These concerns… combined with some previous notes on Netezza add up as follows:

  1. FPGAs no longer provide a performance advantage (per my link above)
  2. FPGAs limit the ability of the DBMS to use more cores (see here)
  3. FPGAs limit the ability of the DBMS to manage workload (see here… and especially the comments)
  4. FPGAs and having a 2-phase split execution environment limits the ability to extend and enhance the code base (a new conjecture)
  5. Zone Maps and CBTs provide a limited ability to solve for a wide range of queries… they are just an index (see here)
  6. DB2 Column Store provides a performance boost equal to or greater than zone maps and CBTs (a new conjecture)
  7. DB2 BLU provides a performance boost well in excess of what Netezza can provide (see here)

The Netezza architecture with FPGAs provided a distinct advantage in 2000 when CPU was the scarce commodity. But multi-core systems and the advance of Moore’s Law soon made processing abundant… and the advantage of FPGA co-processing diminished. Without a distinct advantage the split execution architecture became a disadvantage… and the complexity of that design kept Netezza from developing the advances on top of the Postgres base that were very easy to develop by others.

Architecture counts… and DB2 is a strong product. If, as I suspect, DB2 is now a more capable product than Netezza… I wonder what path IBM may take?

MPP, IMDB and Moore’s Law

In the post here I listed the units of parallelism (UoP) applied by various products on a single node. Those findings are summarized in the table below.

Product

Version/HW

Cores per Node

UoP per Node

Notes

Teradata EDW 6700H

16

32

Uses hyper-threads.
Greenplum DCA UAP Edition

16

8

Recommends 1 Segment for each 2 cores. Maybe some multi-threading per query so it could be greater than 8 on the average… and could be 16 with hyper-threads… but not more than 32 for sure.
Exadata X3

12

12-24

Maybe only 12… cannot find if they use hyper-threads.
Netezza Striper

16

16

May use hyper-threads but limited by 16 FPGAs.
HANA Any Xeon E7-4800

40

80

Uses hyper-threads.

A UoP is defined as the maximum number of  instructions that can execute in parallel on a single node for a single query. Note that in the comments there was a lively debate where some readers wanted to count threads or processes or slices that were “active” but in a wait state. Since any program can start threads that wait I do not count these as UoP (later we might devise a new measure named units of waiting that would gauge the inefficiency in any given design by measuring the amount of waiting around required to keep the CPUs fed… maybe the measure would be valuable in measuring the inefficiency of the queue at your doctor’s office or at any government agency).

On some CPUs vendors such as Intel allow two threads to execute instructions in-parallel in a core. This is called hyper-threading and, if implemented, it allows for two UoP on a single core. Rather than constantly qualify the statements for the rest of this blog when I refer to cores I mean to imply hyper-threads.

The lively comments in the blog included some discussion of the sort of techniques used by vendors to try and keep the cores in the CPU on each node fed. It is these techniques that lead to more active I/O streams than cores and more threads than cores.

For several years now Intel and the other CPU manufacturers have been building ever more cores into their products. This has allowed them to continue the trend known as Moore’s Law. Multi-core is now a fact of life and even phones, tablets, and personal computers have multi-core chips.

But if you look at the table  you can see that the database products above, even the newly announced products from Teradata and Netezza, are using CPUs with relatively few cores. The high-end Intel processors have 40 cores and the databases, with the exception of HANA, use Intel products with at most 16 cores. Further, Intel will deliver Ivy Bridge processors to the market this year with 120 cores. These vendors know this… yet they have chosen to deliver appliances with the previous generation CPUs. You might ask why?

I believe that there is an architectural reason for this (also a marketing reason covered here).

It is very hard to keep 80 cores fed with data when you have to perform block I/O. It will be nearly impossible to keep the 240 cores coming with Ivy Bridge fed. One solution is to deploy more nodes in a shared-nothing configuration with fewer cores per node… but this will be expensive requiring more power, floorspace, administration, etc. This is the solution taken by most of the vendors above. Another solution is to solve the problem without I/O with an in-memory database (IMDB) architecture. This is the solution taken by SAP with HANA.

Intel, IBM, and the rest will continue to build out using the multi-core approach for the foreseeable future. IMDB products will be able to fully utilize this product. Other products will struggle to take full advantage as we can see already… they will adapt and adjust and do what they can… but ultimately IMDB will win, I think… because there is just no other way to keep up as Moore’s Law continues to drive technology… no other way to feed the CPU engines with data fast enough.

If I am right then you will see more IMDB offerings from more vendors, including from the major vendors in the near future (note that this does not include the announcements of “database in memory” from Oracle which is not by any measure an in-memory database).

This is the underlying reason why Donald Feinberg (and Timo Elliott) are right on here. Every organization will be running in-memory… and soon.

HANA Support for OLTP and BI In a Single Table

Aerial view of Hana, Maui (Photo credit: Wikipedia)

This is a rehash of my post for SAP here… I thought you might find it interesting as it describes the architecture HANA uses to support OLTP and BI against a single table.

A couple of points to think about:

  • If you have only one database structure you can optimize for only one query; e.g. the OLTP query is fast against a OLTP structure but slow against a BI structure… or visa versa.
  • If you have two structures you have to ETL the data between the two at some cost. There is cost in keeping a replica of the data, cost in developing, administering, and executing the ETL process. In addition there is a lost opportunity cost hidden in the latency of the data. You cannot see the current state of the business by querying the BI data as some data has not yet been ETL’d across.
  • OLTP performance is normally paramount; so the perfect system would not compromise that performance or compromise it only a little.

Let’s look at the HANA approach to this at a high level.

HANA provides a single view of a table to an application or a user, but under-the-covers each table includes a OLTP optimized part, a BI optimized part, and a mechanism for moving data from one part to the other

When a transaction hits the system; inserts, updates, and deletes are processed in the OLTP part with no performance penalty. The read portion of the OLTP query accesses the read-optimized internal structure with no performance penalty. Note that reading a single column in a column store, which is the key for the transaction, is roughly equivalent to reading an index structure on top of a standard disk-based DBMS. Except the column is always in-memory which means I/O is never required. This provides the HANA system with an advantage over a disk-based system. Disk I/O is 120+ times slower than memory access so even an index is unlikely to beat in-memory. See here for some numbers you should know.

After the transaction is committed into the internal, OLTP-optimized part, a process starts that moves the data to the BI optimized part. This is called a delta merge as the OLTP portion holds all of the changes, the delta, in the data set.

When a BI query starts it can limit the scan to only partitions in the BI optimized part, or if real-time data is required it can scan both parts. The small portion of the scan that accesses the OLTP/delta portion is sub-optimal when compared to the scan of the BI part,  but not slow at all as the data is all in-memory.

We can tease the performance apart as follows:

  1. There is a OLTP insert/update/delete “write” portion… and HANA executes this like any OLTP database, as fast as an OLTP RDBMS, with a commit after a write-to-log;
  2. There is a OLTP select “read” portion… and HANA performs this in the in-memory column store faster than many OLTP databases… and scans the delta structure as fast as any OLTP database;
  3. There is a delta merge from the OLTP write-optimized part to the BI read-optimized column store that is hundreds to tens of thousands of times faster than any ETL tool; and
  4. There is a BI select portion that scans the in-memory column store hundreds to thousands of times faster than a disk-based BI database.
  5. If the BI query requires access to real-time data then an in-memory scan of the delta file is required… there is no analogy to this in a system with separate OLTP and BI tables.
The implementation uses MVCC instead of locks.

Nice.

The Teradata Myth of Query Concurrency

When I was at Greenplum… and now again at SAP… I ran into a strange logic from Teradata about query concurrency. They claimed that query concurrency was a good thing and an indicator of excellent workload management. Let’s look at a simple picture of how that works.

In Figure 1 we depict a single query on a Teradata cluster. Since each node is working in parallel the picture is representative no matter how many nodes are attached. In the picture each line represents the time it takes to read a block from disk. To make the picture simple we will show I/O taking only 1/10th of the clock time… in the real world it is slower.

Given this simplification we can see that a single query can only consume 10% of the CPU… and the rest of the time the CPU is idle… waiting for work. We also represented some I/O to spool files… as Teradata writes all intermediate results to disk and then reads them in the next step. But this picture is a little unfair to Greenplum and HANA as I do not represent spool I/O completely. For each qualifying row the data is read from the table on disk, written to spool, and then read from spool in the subsequent step. But this note is about concurrency… so I simplified the picture.

Figure 2 shows the same query running on Greenplum. Note that Greenplum uses a data flow architecture that pushes tuples from step to step in the execution plan without writing them to disk. As a result the query completes very quickly after the last tuple is scanned from the table.

Let me say again… this story is about CPU utilization, concurrency, and workload management… I’m not trying to say that there are not optimizations that might make Teradata outperform Greenplum… or optimizations that might make Greenplum even faster still… I just want you to see the impact on concurrency of the spool architecture versus the data flow architecture.

Note that on Greenplum the processors are 20% busy in the interval that the query runs. For complex queries with lots of steps the data flow architecture provides an even more significant advantage to Greenplum. If there are 20 steps in the execution plan then Teradata will do spool I/O, first writing then reading the intermediate results while Greenplum manages all of the results in-memory after the initial reads.

In Figure 3 we see the impact of having the data in-memory as with HANA or TimeTen. Again, I am ignoring the implications of HANA’s columnar orientation and so forth… but you can clearly see the implications by removing block I/O. 

Now let’s look at the same pictures with 2 concurrent queries. Let’s assume no workload management… just first in, first out.

In Figure 4 we see Teradata with two concurrent queries. Teradata has both queries executing at the same time. The second query is using up the wasted space made available while the CPUs wait for Query 1’s I/O to complete. Teradata spools the intermediate results to disk; which reduces the impact on memory while they wait.  This is very wasteful as described here and here (in short, the Five Minute Rule suggests that data that will be reused right away is more economically stored in memory)… but Teradata carries a legacy from the days when memory was dear.

But to be sure… Teradata has two queries running concurrently. And the CPU is now 20% busy.

Figure 5 shows the two-query picture for Greenplum. Like Teradata, they use the gaps to do work and get both queries running concurrently. Greenplum uses the CPU much more efficiently and does not write and read to spool in between every step.

In Figure 6 we see HANA with two queries. Since one query consumed all of the CPU the second query waits… then blasts through. There is no concurrency… but the work is completed in a fraction of the time required by Teradata.

If we continue to add queries using these simple models we would get to the point where there is no CPU available on any architecture. At this point workload management comes into play. If there is no CPU then all that can be done is to either manage queries in a queue… letting them wait for resources to start… or start them and let them wastefully thrash in and out… there is really no other architectural option.

So using this very simple depiction eventually all three systems find themselves in the same spot… no CPU to spare. But there is much more to the topic and I’ve hinted about these in previous posts.

Starting more queries than you can service is wasteful. Queries have to swap in and out of memory and/or in and out of spool (more I/O!) and/or in and out of the processor caches. It is best to control concurrency… not embrace it.

Running virtual instances of the database instead of lightweight threads adds significant communications overhead. Instances often become unbalanced as the data returned makes the shards uneven. Since queries end when the slowest instance finishes it’s work this can reduce query performance. Each time you preempt a running query you have to restore state and repopulate the processor’s cache… which slows the query by 12X-20X. … Columnar storage helps… but if the data is decompressed too soon then the help is sub-optimal… and so on… all of the tricks used by databases and described in these blogs count.

But what does not count is query concurrency. When Teradata plays this card against Greenplum or HANA they are not talking architecture… it is silliness. Query throughput is what matters. Anyone would take a system that processes 100,000 queries per hour over a system that processes 50,000 queries per hour but lets them all run concurrently.

I’ve been picking on Teradata lately as they have been marketing hard… a little too hard. Teradata is a fine system and they should be proud of their architecture and their place in the market. I am proud to have worked for them. I’ll lay off for a while.

 

Teradata’s HANA Mathematics

I recently pointed out some silliness published by Teradata to several SAP prospects. There is more nonsense that was sent and I’d like to take a moment to clear up these additional claims.

In their note to HANA prospects they used the following numbers from the paper SAP published here:

# of Query Streams

1

10 20

25

# of Queries per Hour (Throughput)

6,282

36,600 48,770

52,212

Teradata makes several claims from these numbers. First they claim that the numbers demonstrate a bottleneck that is tied to either the NUMA effect or to the SMP Knee Curve. This nonsense is the subject of a previous blog here.

For any database system as you increase the number of queries to the point where there is contention the throughput decreases. This is just common sense. If you have 10 cores and 10 threads and there is no contention then all threads run at the same speed as fast as possible. If you add an 11th thread then throughput falls off, as one thread has to wait for a core. As you add more threads the throughput falls further until the system is saturated and throughput flattens. Figure 1 is an example of the saturation curve you would expect from any system as the throughput flattens.

There are some funny twists to this, though. If you are an IMDB then each query can use 100% of a core. If you are multi-threaded IMDB then each query can use 100% of all cores.  If you are a disk-based system then you give up the CPU to another query while you wait for I/O… so throughput falls. I’ll address these twists in a separate blog… but you will see a hint at the issue here.

Teradata claims that these numbers reflect a scaling issue. This is a very strange claim. Teradata tests scaling by adding hardware, data, and queries in equal amounts to see if the query performance holds constant… or they add hardware and data to look for a correlation between the number of nodes and query performance… hoping that as the nodes increase the response time decreases.  In fact Teradata scales well… as does HANA… But the hardware is constant in the HANA benchmark so there is no view into scaling at all. Let me emphasis this… you cannot say anything about scaling from the numbers above.

Teradata claims that they can extrapolate the saturation point for the system… this represents very bad mathematics. They take the four data points in the table and create an S curve like the one in Figure 1… except they invert it to show how throughput decreases as you move towards the saturation point… Figure 2 shows the problem.

If you draw a straight line through the curve using any sort of math you miss the long tail at the end. This is an approximation of the picture Teradata drew… but even in their picture you can see a tail forming… which they ignore. It is also questionable math to extrapolate from only four observations. The bottom line is that you cannot extrapolate the saturation point from these four numbers… you just don’t know how far out the tail will run unless you measure it.

To prove this is nonsense you just have to look here. It turns out that SAP publicly published these benchmark results in two separate papers and this second one has numbers out to 60 streams. Unsurprisingly at 60 streams HANA processed 112,602 queries per hour while Teradata told their customers that it would saturate well short of that… at 49,601 queries (they predicted that HANA would thrash and the number of queries/hour would fall back… more FUD).

Teradata is sending propaganda to their prospects with scary extrapolations and pronouncements of architectural bottlenecks in HANA. The mathematics behind their numbers is weak and their incorrect use of deep architectural terms demonstrates ignorance of the concepts.  They are trying to create Fear, Uncertainty, and Doubt. Bad marketing… not architecture, methinks.

Exit mobile version
%%footer%%