Oracle 12c IMDB Announcement at OOW13

SAP4OOWI changed the picture to show you the billboard SAP bought on US101N right across from the O HQ…

– Rob

Larry Ellison announced a new in-memory capability for Oracle 12c last night. There is little solid information available but taken at face value the new feature is significant… very cool… and fairly capable.

In short it appears that users have the ability to pin a table into memory in a columnar format. The new feature provides level 3 (see here) columnar capabilities… data is stored compressed and processed using vector and SIMD instruction sets. The pinned data is a redundant copy of the table in-memory… so INSERT/UPDATE/DELETE and data loads queries will use the row store and data is copied and converted to the in-memory columnar format.

As you can imagine there are lots of open questions. Here are some… and I’ll try to sort out answers in the next several weeks:

  1. It seems that data is converted row-to-columnar in real-time using a 2-phased commit. This will significantly slow down OLTP performance. LE suggested that there was a significant speed-up for OLTP based on performance savings from eliminating indexes required for analytics. This is a little disingenuous, methinks… as you will most certainly see a significant degradation when you compare OLTP performance without indexes (or with a couple of OLTP-centric indexes) and with the in-memory columnar feature on to OLTP performance without the redundant copy and format to columnar effort. So be careful. The use case suggested: removing analytic indexes and using the in-memory column store is solid and real… but if you have already optimized for OLTP and removed the analytic indexes you are likely to see performance drop.
  2. It is not clear whether the columnar data is persisted to disk/flash. It seems like maybe it is not. This implies that on start-up or recovery data is read from the row store on-disk tables and logs and converted to columnar. This may significantly impact start-up and recovery for OLTP systems.
  3. It is unclear how columnar tables are joined to row tables. It seems that maybe this is not possible… or maybe there is a dynamic conversion from one form to another? Note that it was mentioned that is possible for columnar data to be joined to columnar data. Solving for heterogeneous joins would require some sophisticated optimization. I suspect that when any row table is mentioned in a query that the row join engine is used. In this case analytic queries may run significantly slower as the analytic indexes will have been removed.
  4. Because of this and of item #2 it is unclear how this feature plays with Exadata. For lots of reasons I suspect that they do not play well and that Exadata cannot use the new feature. For example, there is no mention of new extended memory options for the Exadata appliance… and you can be sure that this feature will require more memory.

There was a new hardware system announced that uses this in-memory capability… If you add all of this up it may be that this is a system designed to run SAP applications. In fact, before the presentation on in-memory there was a long (-winded) presentation of a new Fujitsu system and the SAP SD benchmark was specifically mentioned. This was not likely an accident. So… maybe what we have is a counter to HANA for SAP apps… not a data warehouse at all.

As I said… we’ll see as the technical details emerge. If the architectural constraints 1-4 above hold then this will require some work for Oracle to compete with HANA for SAP apps or for data warehouse workloads…

IBM BLU and SAP HANA

Weird blue dot (Photo credit: awshots)

As I noted here, I think that the IBM BLU Accelerator is a very nice piece of work. Readers of this blog are in the software business where any feature developed by any vendor can be developed in a relatively short period of time by any other vendor… and BLU certainly moves DB2 forward in the in-memory database space led by HANA… it narrowed the gap. But let’s look at the gap that remains.

First, IBM is touting the fact that BLU requires no proprietary hardware and suggests that HANA does. I do not really understand this positioning? HANA runs on servers from a long list of vendors and each vendor spins the HANA reference architecture a little differently. I suppose that the fact that there is a HANA reference architecture could be considered limiting… and I guess that there is no reference for BLU… maybe it runs anywhere… but let’s think about that.

If you decide to run BLU and put some data in-memory then certainly you need some free memory to store it. Assuming that you are not running on a server with excess memory this means that you need to buy more. If you are running on a blade that only supports 128GB of DRAM or less, then this is problematic. If you upgrade to a 256GB server then you might get a bit of free memory for a little data. If you upgrade to a fat server that supports 512GB of DRAM or more, then you would likely be within the HANA reference architecture set. There is no magic here.

One of the gaps is related: you cannot cluster BLU so the amount of data you can support in-memory is limited to a single node per the paragraphs above. HANA supports shared-nothing clustering and will scale out to support petabytes of data in-memory.

This limit is not so terribly bad if you store some of your data in the conventional DB2 row store… or in a columnar format on-disk. This is why BLU is an accelerator, not a full-fledged in-memory DBMS. But if the limit means that you can get only a small amount of data resident in-memory it may preclude you from putting the sort of medium-to-large fact tables in BLU that would benefit most from the acceleration.

You might consider putting smaller dimension tables in BLU…. but when you join to the conventional DB2 row store the column store tables are materialized as rows and the row database engine executes the join. You can store the facts in BLU in columnar format… but they may not reside in-memory if there is limited availability… and only those joins that do not use row store will use the BLU level 3 columnar features (see here for a description of the levels of columnar maturity). So many queries will require I/O to fetch data.

When you pull this all together: limited available memory on a single node, with large fact tables projecting in and out of disk storage, and joins pushed to the row store you can imagine the severe constraint for a real-world data warehouse workload. BLU will accelerate some stuff… but the application has to be limited to the DRAM dedicated to BLU.

It is only software… IBM will surely add BLU clustering (see here)… and customers will figure out that they need to buy the same big-memory servers that make up the HANA reference architecture to realize the benefits…  For analytics, BLU features will converge over the next 2-3 years to make it ever more competitive with HANA. But in this first BLU release the use of in-memory marketing slogans and of tests that might not reflect a real-world workload are a little misleading.

Right now it seems that HANA might retain two architectural advantages:

  1. HANA real-time support for OLTP and analytics against a single table instance; and
  2. the performance of the HANA platform: where more application logic runs next to the DBMS, in the same address space, across a lightweight thread boundary.

It is only software… so even these advantages will not remain… and the changing landscape will provide fodder for bloggers for years to come.

References

  • Here is a great series of blogs on BLU that shows how joins with the row store materializes columns as rows…

HANA Memory Utilization

The current release of HANA requires that all of the data required to satisfy a query be in-memory to run the query. Let’s think about what this means:

HANA compresses tables into bitmap vectors… and then compresses the vectors on write to reduce disk I/O. Disk I/O with HANA? Yup.

Once this formatting is complete all tables and partitions are persisted to disk… and if there are updates to the tables then logs are written to maintain ACIDity and at some interval, the changed data is persisted asynchronously as blocks to disk. When HANA cold starts no data is in-memory. There are options to pre-load data at start-up… but the default is to load data as it is used.

When the first query begins execution the data required to satisfy the query is moved into memory and decompressed into vectors. Note that the vector format is still highly compressed and the execution engine operates on this compressed vector data. Also, partition elimination occurs during this data move… so only the partitions required are loaded. The remaining data is on disk until required.

Let us imagine that after several queries all of the available memory is consumed… but there is still user data out-of-memory on peripheral storage… and a new query is submitted that requires this data. At this point HANA frees enough storage to satisfy the new query and processes it. Note that, in the usual DW case (write-once/read-many), the data flushed from memory does not need to be written back…  the data is already persisted… otherwise HANA will flush any unwritten changed blocks…

If a query is submitted that performs a cartesian product… or that requires all of the data in the warehouse at once… in other words where there is not enough memory to fit all of the vectors in memory even after flushing everything else out… the query fails. It is my understanding that this constraint will be fixed in a next release and data will stream into memory and be processed in-stream instead of in-whole. Note that in other databases a query that consumes all of the available memory may never complete, or will seriously affect all other running queries, or will lock the system… so the HANA approach is not all bad… but as noted there is room for improvement and the constraint is real.

This note should remove several silly arguments leveled by HANA’s competitors:

  • HANA, and most in-memory databases, offer full ACID-compliance. A system failure does not result in lost data.
  • HANA supports more data than will fit in-memory and it pages data in-and-out in a smart fashion based on utilization. It is not constrained to only data that fits in-memory.
  • HANA is not useless when it runs out of memory. HANA has a constraint when there is more data than memory… it does not crash the system… but lets be real… if you page data to disk and run out of disk you are in trouble… and we’ve all seen our DBMS‘s hit this wall. If you have an in-memory DBMS then you need to have enough memory to support your workload… if you have a DB2 system you better not run out of temp space or log space on disk… if you have Teradata you better not run out of spool space.

I apologize… there is no public reference I know of to support the features I described. It is available to HANA customers in the HANA Blue Book. It is my understanding that a public version of the Blue Book is being developed.

Database Computing is Supercomputing… Some external reading: May 2013

Superman: Doomsday & Beyond (Photo credit: Wikipedia)

I would like to recommend to you John Appleby’s post  here on the HANA blog site. While the title suggests the article is about HANA, in fact it is about trends in computing and processors… and very relevant to posts here past, present, and upcoming…

I would also recommend Curt Monash’s site. His notes on Teradata here mirror my observation that a 30%-50% performance boost per release cycle is the target for most commercial databases… and what wins in the general market. This is why the in-memory capabilities offered by HANA and maybe DB2 BLU are so disruptive. These products should offer way more than that… not 1.5X but 100X in some instances.

Finally I recommend “What Every Programmer Should Know About Memory” by Ulrich Drepper here. This paper provides a great foundation for the deep hardware topics to come.

Database computing is becoming a special case, a commercial case, of supercomputing… high-performance computing (HPC) to those less inclined to superlatives. Over the next few years the differentiation between products will increasingly be due to the use of high-performance computing techniques: in-memory techniques, vector processing, massive parallelism, and use of HPC instruction sets.

This may help you to get ready…

The Fog is Getting Thicker…

San Francisco in fog (Photo credit: Wikipedia)

I renamed this so that Teradata folks would not get here so often… its not really about Intelligent Memory… just prompted by it. The post on Intelligent Memory is here. – Rob

Two quick comments on Teradata’s recent announcement of Intelligent Memory.

First… very very cool. More on this to come.

Next… life is going to become very hard for my readers and for bloggers in this space. The notion of an in-memory database is becoming rightfully blurred… as is the notion of column store.

Oracle blurs the concepts with words like “database in-memory” and “hybrid column compression” which is neither an in-memory database or a column store.

Teradata blurs the concept with a strong offering that uses DRAM as a block-IO device (like the old RAM-disks we used to configure on our PCs).

Teradata and Greenplum blur the idea of a column store by adding columnar tables over their row store database engines.

I’m not a fan of the double-speak… but the ability of companies to apply the 80/20 rule to stretch their architectures and glue on new advanced technologies is a good thing for consumers.

But it becomes very hard to distinguish the products now.

In future blogs I’ll try to point out differences… but we’ll have to go a little deeper into the Database Fog.

How Good Is Teradata’s Intelligent Memory?

A 30 feet chunk of the cliff below the apartment building fell to Pacific Ocean. (Photo credit: Wikipedia)

Jason asked a great question in the comment section here… he asked… does Teradata’s Intelligent Memory erode HANA’s value proposition?  Let me answer here in a more general way that is applicable to the general database space…

Every time a vendor puts more silicon between the CPU and the disk they will improve their performance (and increase their price). Does this erode HANA’s value proposition? Sure. Every advance by any vendor erodes every other vendor’s position.

To win business a new database product has to be faster than the competition. In my experience you have to be at least 30% faster to unseat the incumbent. If you are 50% faster you will win a lot of business. If you are 2x, 100%, faster you win nearly every time.

Therefore the questions are:

  • Did the Teradata announcement eliminate a set of competitors from reaching these thresholds when Teradata is the incumbent? Yup. It is very smart.
  • Does Intelligent Memory allow Teradata to reach these thresholds when they compete against another incumbent. Yup.
  • Did it eliminate HANA from reaching these thresholds when competing with Teradata? I do not think so… in fact I’m pretty sure it is not the case… HANA should still be way over the 2x threshold… but the reasons why will require a deeper dive… stay tuned.

In the picture attached a 30 foot chunk eroded… but Exadata still stands. Will it be condemned?

Note: Here is a commercial post on the SAP HANA blog site that describes at a high level why I think HANA retains a distinct architectural advantage.

Memory Trends and HANA

If the Gartner estimates here are correct… then DRAM prices will fall 50% per year per year over the next several years… and then in 2015 non-volatile RAM (see the related articles below) will become generally available.

It has been suggested that memory prices will fall slower than data warehouses will grow (see here). That does not seem to be the case… and the combination of cheaper memory and then non-volatile memory will make in-memory databases like SAP HANA ever more compelling. In fact, as I predicted… and to their credit, Teradata is adding more memory (see here).

Related articles

Hadoop and the EDW

Squeeze If You Feel Pain (Photo credit: Artotem)

Cloudera and Teradata have jointly published a nice paper here that presents an interesting perspective of how Hadoop and an EDW play together. Simply put, Hadoop becomes the staging area for “raw data streams” while the EDW stores data from “operational systems”. Hadoop then analyzes the raw data and shares the results with the EDW. Two early examples provided suggest:

  • Click stream data is analyzed to identify customer preferences that are then shared with the EDW. Note that the amount of data sent from Hadoop to the EDW would be fairly small in this case.
  • Detailed data is stored on Hadoop to build analytic models. The models are then transferred to the EDW to score sales activity data. Note that in this scenario the scored activity detail has to live in Hadoop to perform modeling… but it is unclear why it has to live in the EDW as well. I presume that scoring takes place on the EDW instead of in Hadoop for performance reasons… but maybe the data, the modeling, and the scoring should just take place in Hadoop?

The paper then positions Hadoop as an active archive. I like this idea very much. Hadoop can store archived data that is only accessed once a month or once a quarter or less often… and that data can be processed directly by Hadoop programs or shared with the EDW data using facilities such as Teradata’s SQL-H, or Greenplum‘s External Hadoop tables (not by HAWQ, though… see here), or by other federation engines connected to HANA, SQL Server, Oracle, etc.

But think about the implications on how much data has to stay in your EDW if you archive everything older than 90, or even 180, days to Hadoop. The EDW shrinks significantly and the TCO advantage to your Enterprise will be significant. This is very cool.

There is one item in the paper I disagree with, though… and another statement that I think has a very short shelf-life.

The paper suggests that indexes, materialized views, aggregate join indexes, and other tweaks are what differentiates an EDW. I believe that reliance on these structures make for a fragile EDW where only some queries can run fast. I like Teradata better when it just robustly scans fast and none of these redundant-data tuning artifacts are required (more here and here). Teradata was the original scan-fast DBMS… it is more than capable.

The paper also suggests that an EDW maintains value by including a sophisticated cost-based optimizer that uses data demographic statistics to identify an optimal query execution plan. I agree that Hadoop lacks this now… but there are several projects like Cloudera Impala that will eliminate this gap in the near term.

I believe that if you read between the lines you will see more evidence to support my belief (here) that Hadoop will squeeze the EDW vendors hard… and that the size of a squeezed EDW will then fit in an in-memory database.

MPP, IMDB and Moore’s Law

In the post here I listed the units of parallelism (UoP) applied by various products on a single node. Those findings are summarized in the table below.

Product

Version/HW

Cores per Node

UoP per Node

Notes

Teradata EDW 6700H

16

32

Uses hyper-threads.
Greenplum DCA UAP Edition

16

8

Recommends 1 Segment for each 2 cores. Maybe some multi-threading per query so it could be greater than 8 on the average… and could be 16 with hyper-threads… but not more than 32 for sure.
Exadata X3

12

12-24

Maybe only 12… cannot find if they use hyper-threads.
Netezza Striper

16

16

May use hyper-threads but limited by 16 FPGAs.
HANA Any Xeon E7-4800

40

80

Uses hyper-threads.

A UoP is defined as the maximum number of  instructions that can execute in parallel on a single node for a single query. Note that in the comments there was a lively debate where some readers wanted to count threads or processes or slices that were “active” but in a wait state. Since any program can start threads that wait I do not count these as UoP (later we might devise a new measure named units of waiting that would gauge the inefficiency in any given design by measuring the amount of waiting around required to keep the CPUs fed… maybe the measure would be valuable in measuring the inefficiency of the queue at your doctor’s office or at any government agency).

On some CPUs vendors such as Intel allow two threads to execute instructions in-parallel in a core. This is called hyper-threading and, if implemented, it allows for two UoP on a single core. Rather than constantly qualify the statements for the rest of this blog when I refer to cores I mean to imply hyper-threads.

The lively comments in the blog included some discussion of the sort of techniques used by vendors to try and keep the cores in the CPU on each node fed. It is these techniques that lead to more active I/O streams than cores and more threads than cores.

For several years now Intel and the other CPU manufacturers have been building ever more cores into their products. This has allowed them to continue the trend known as Moore’s Law. Multi-core is now a fact of life and even phones, tablets, and personal computers have multi-core chips.

But if you look at the table  you can see that the database products above, even the newly announced products from Teradata and Netezza, are using CPUs with relatively few cores. The high-end Intel processors have 40 cores and the databases, with the exception of HANA, use Intel products with at most 16 cores. Further, Intel will deliver Ivy Bridge processors to the market this year with 120 cores. These vendors know this… yet they have chosen to deliver appliances with the previous generation CPUs. You might ask why?

I believe that there is an architectural reason for this (also a marketing reason covered here).

It is very hard to keep 80 cores fed with data when you have to perform block I/O. It will be nearly impossible to keep the 240 cores coming with Ivy Bridge fed. One solution is to deploy more nodes in a shared-nothing configuration with fewer cores per node… but this will be expensive requiring more power, floorspace, administration, etc. This is the solution taken by most of the vendors above. Another solution is to solve the problem without I/O with an in-memory database (IMDB) architecture. This is the solution taken by SAP with HANA.

Intel, IBM, and the rest will continue to build out using the multi-core approach for the foreseeable future. IMDB products will be able to fully utilize this product. Other products will struggle to take full advantage as we can see already… they will adapt and adjust and do what they can… but ultimately IMDB will win, I think… because there is just no other way to keep up as Moore’s Law continues to drive technology… no other way to feed the CPU engines with data fast enough.

If I am right then you will see more IMDB offerings from more vendors, including from the major vendors in the near future (note that this does not include the announcements of “database in memory” from Oracle which is not by any measure an in-memory database).

This is the underlying reason why Donald Feinberg (and Timo Elliott) are right on here. Every organization will be running in-memory… and soon.

A Look Back at 2012

There seems to be a sort of odd tradition for bloggers to look back at the past year as the New Year starts to unfold. Here is my review of my posts and some presents

(Photo credit: Wikipedia)

Top Post

Far and away the most viewed post was Exalytics vs. HANA What are they thinking? This simply notes that these two products are not really comparable sharing only the descriptor “in-memory”.

My Favorite Post

I liked this the best… ’nuff said: What is Big Data?

OK, here is my 2nd favorite: A Quick Five Minute Rule Update for In-memory Databases, but you probably need to read the prequel first: The Five Minute Rule and In-memory Databases

These papers and the underlying thinking by smarter folks than I will inform you about the definition of Hot Data from the point of pure IT economics.

The Most Under-rated Post

This is the post I thought was the most important… as it might strongly influence data warehouse platform buying decisions over the next few years… And it might even influence the stocks you pick: The Future of Hadoop and Big Data DBMSs

Some Other Posts to Read

Here are two posts that informed me:

The Five Minute Rule… This will point you to a Wikipedia article that will point you to the whole series of papers.

What Every Programmer Should Know About Memory… This paper goes into gory detail about how memory works inside a processor. It is hardware-centric for you software folks… but provides the basis for understanding why in-memory DBMSs are fast and why Exadata is not an in-memory DBMS.

And some other Good Stuff

Kevin Closson on Exadata

Google Research

Thank you for your attention last year. I hope that each of you has a safe, prosperous, and happy new year…

– Rob

Exit mobile version
%%footer%%